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Abstract

The finite element method was used to solve the flow field problem

around a thin, lifting, flat plate, airfoil. The governing equation

solved is the Iaplace equation, which is valid for inviscid, irrotational,

incompressible flow.

The finite element equations were derived through the method of

weighted residuals with weighting functions selected by the Galerkin

method. For the purposes of analysis, the infinite flow field was

replaced by a finite domain. Neumann type boundary concitions were

imposed on the airfoil surface. Dirichlet boundary conditions were

specified as required by the problem formulation for uniqueness.

Three types of solution methods were used, for various treatments

of the jump discontinuity required in the lifting problem. The first

method was a superposition technique, which treated the potential along

the upper and lower nodes of the branch cut as constant. The circulation

was determined by applying the Kutta condition during the combination

of the subproblems. The second method was an iterative technique where

the circulation was varied until the Kutta condition was satisfied. This

method also specified constant potential along the upper and lower branch

cut nodes. The third method was also an iterative technique on circula-

tion; however, only the ratio of potentials across the branch cut nodes

were kept constant.

Three types of elements were investigated to approximate the solution

for the velocity potential function. The first was a bilinear rectangular

vi
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element. The second was a mixed element with three linear sides and one

quadratic side used only on the airfoil surface. All other elements used

with it were bilinear. The third element used was a biquadratic, Lagrange,

element. The convergence characteristics of each element were studied

as a function of the discretization. The pressure distributions are

compared with those of classical thin-airfoil theory.

vii
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FINITE ELMET ANALYSIS OF SUBSONIC

FLOW OVER A LIFTING THIN~ AIRFOIL

I Introduction

In the design of aircraft lifting surfaces, it is important to

select a design that has a high probability of meeting desired charac-

teristics. Because of the large costs associated with the construction

and test of models, computational techniques for predicting the perform-

ance of these designs have evolved with aircraft technology. Over the

past 25 years, the most extensively used method in the aircraft indus-

try has been the finite difference method. This method; however,

becomes difficult to apply when complex geometries, multiply connected

domains, or complex boundary conditions are involved. Finite element

methods can overcome some of these difficulties, through easier treat-

ment of complex geometries and a more consistant method of using higher-

order approximations (Ref 1). For these reasons the finite element

has been increasingly utilized in solution of fluids problems. The

treatment of the flowfield as a two-dimensional potential flow problem,

although the flow is in fact more complex, is a reasonable simplification

since the selection of a suitable section shape is an important part of

the design process. The application of this method to the thin lifting

airfoil is a good first step in the solution of the general airfoil

problem. A further simplification can be made by assuming incompressible

flow, thus reducing the problem to solution of the Laplace equation.

History and Previous Work

The finite element method was developed by aircraft structural



engineers in the 1950's, to analyze large structural problems in air-

craft. These early developments were the result of applying matrix

methods, which were successful with discrete structures, to continuous

ones. The first description of the procedure was presented in 1956 by a

group ( Turner, Clough, 1--artin, and Topp) at the Boeing Aircraft Corn-

pany. The extension of the finite element method to non-structural

problems began in the early 1960's. Finite element analysis is closely

related to the classical variational concepts of the Rayleigh-Ritz

method or the weighted residual methods modeled after the method of

Galerkin, thus it has been established as an important branch of approx-

imation theory ( Ref 2 and 3).

The first paper to propose the extension of the finite element

method to continuum problems involving the Laplace equation was by

Zienkiewiez and Cheung in 1965 ( Ref 4). In 1968, Martin ( Ref 5) using

linear triangular elements and a variational principle formulation

solved for the stream function for incompressible flow over a circular

cylinder between two parallel walls. Norrie and de Vries ( Ref 6-8) in

1969 developed finite element techniques for solving incompressible

flow problems over single and multiple airfoils. They used a variational

principle to produce the finite element equations and formulated the

problem in terms of both velocity potential and stream functions with

linear triangular elements. The velocity potential solution involved the

linear superposition of a thickness problem and a lifting problem. The

combination of the two problems and application of the Kutta condition

at the sharp trailing edge resulted in the specification of the circu-

lation. This approach was also used by Carey (Ref 9) who extended it to

compressible flow..



Shen ( Ref 1O) formulated the problem of incompressible flow over a

lifting airfoil in terms of the stream function using a variational

principle to develop the finite element equations. In this case, Shen

treated the infinite domain as an inner and outer patch. The inner patch

contained the airfoil and a portion of the flowfield at an arbitrary but

sufficiently distant boundary. Only this inner patch was solved through

finite element procedures, with linear triangular elements. In the outer

patch an analytic solution with unknown coefficients was used. The two

solutions were matched at the common boundary. The arbitrary airfoil was

transformed through a Joukowski transformation to a near circle. This

procedure was also used by Habashi (Pef ii) who used a Laurent series

for the solution in the outer patch. He notes that this technique pro-

duces the value of circulation without integrating the pressure distri-

bution, and serves to magnify regions of high gradients, at the leading

and trailing edges. Recently, Baskharone and Hamed ( Ref 12) developed a

technique for treating the circulation around the airfoil as an additional

variable, the value of which is directly calculated in the solution

process, rather than an externally imposed condition. This is done by

treating7the circulation as a nodeless variable. A potential function

formulation was used with linear triangular elements and parabolic

quadrilateral isoparametric elements. Results are given for both a

single airfoil and a cascade airfoil.

Objective

The purpose of this work was to compare the ability of several

different finite element formulations to predict the surface pressure

distributions for two-dimensional potential flow over a thin airfoil in

an infinite uniform flowfield for incompressible subsonic flow. The

3
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results were compared with known exact solutions. The assumptions

traditionally used in classical thin-airfoil and small disturbance

theories were used wherever necessary to simplify the problem. Three

types of rectangular finite elements were used: linear; mixed, a tran-

sition element with three linear sides and one quadratic side aligned

along the airfoil surface; and quadratic, Lagrange, elements.

4.
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II Thin Airfoil ?'roblem Formulation

The problem being considered is one of steady, two-dimensional,

incompressible, inviscid, irrotational flow about a thin airfoil in a

uniform stream of infinite domain. Let the freestream be taken to be

directed in the positive x-direction, with the coordinate system at-

tached at the midpoint of the airfoil. The symbol 11 denotes the infin-

ite flowfield domain, with points (x,y), as shown in Fig 1. The boundary

of -a (denoted a-a ) is composed of all points on the airfoil surface

and the boundary at infinity. Because of circulation, a branch cut is

placed in f-.

For an irrotational flowfield, a velocity potential exists, such

that the governing differential equation for incompressible flow is the

Laplace equation

V t01( X o for (x,y) in I- (1)

where is the velocity potential function. The boundary conditions are

V -0 0 ~ , (2)

where F( 30 describes the airfoil profile, and the infinity condition

V -- 0., as (x, y) - (3)

where U.. is the free-stream velocity. For the lifting case, the Kutta

condition must be satisfied, which requires the circulation (P) be

5
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such that the velocity is finite at the trailing edge.

Method of Small Perturtations

The total velocity potential I can be expressed as the sum of the

velocity potential due to the free stream and a perturbation potential 0

(Ref 13),

where Q. is the free stream velocity and is the perturbation poten-

tial. The perturbation potential has velocity components U and Lf

in the x- and y- direction respectively defined by

"k- a (5)

Taking partial derivacives

(6)

Since V Z. X + O  then also

V 09 0 for (x,y) in .

The boundary condition on the airfoil surface is now

(U,, + VO) VF: 0 F0,L (8)

7i

4



The dot product is then

( 01 _ 7 " D! (9)

The airfoil surface is described by

"= 7x (jo)

then F(,L ) r(J)--= 0 (11)

and _ F (12)

_ x dxa

Substituting (12) into (9) results in

;t_ .+ o (13)

Making the assumption that the velocity perturbations produced by the

airfoil in the flowing stream are small, since the airfoil is assumed

very thin,, can be neglected. As in classical thin-airfoil theory,

the tangency ( or surface) boundary condition is applied on the x-axis

(y=O), rather than on the actual surface itself. The infinity condition

requires

S6- 0 as x,y -> (14)

The Kutta condition requires the velocity to be finite at the trailing

edge. This is accoMplished by setting

8



- at the trailing edge (15)

ax

In order to keep unique, a branch cut is introduced into the

flowfield. The potential jump across this cut is equal to the circulation,

defined by

P --
C1 1 (16)

where V is the tangent velocity and A is along the path of integra-

tion. Therefore across the cut

- is enforced. (17)

The actual value of P is determined by enforcing the Kutta condition.

The pressure coefficient from small perturbation theory is (Ref 13)

Cp - 2 - ax (i8)

Due to the linearity of the laplace equation, the solution for a

particular airfoil shape can be determined from the sum of the solutions

to the three subproblems; thickness, camber, and flat plate at angle of

attack, as shown in Fig 2. The difference among the three problems is

the treatment of the boundary conditict on the airfoil (Ref 14). For the

thickness problem

= + ('

0 19



where

;/,,a -(20)

and V = upper surface

4 = lower surface

For the camber problem

_ + I 0,(21)

where 1 ( ~ f)(22)

The condition for a flat plate at angle of attack 9( is

I - (23)

-~101

The Finite Element Approximation

The method of weighted residuals is used to obtain the finite

element equations and an approximate solution to the Laplace equation

(Ref 3). To apply the method is approximated by

U

;EOcO (24)
izi 

I

where k)j are assumed independent functions chosen such that all global

boundary conditions are satisfied, O are the unknown nodal parameters,

and 0 is the number of system nodes. Since is an approximate

solution, when substituted into the Laplace equation, it does not

exactly satisfy the equation. The equation is thus set equal to an error,

10
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GENERAL AIRFOIL

THICKNESS

CAMBER

U.. . ..

ANGLE OF ATTACK

Figure 2. Airfoil Problem Superposition
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L.Thus

\7 - (25)

The method of weighted residuals attempts to determine the O" unknowns

in such a way that the error over the solution domain is small. This is

accomplished by forming a weighted average of the error and specifying

that this weighted average vanishes over the solution domain. Thus

V 0 0 (26)

where W are the linearly independent weighting functions. Equation (26)

is integrated by parts to introduce the influence of the natural

boundary conditions

vV~id2 \7lWc~ (27)

The weight functions Wi are set equal to the trial functions 6

(Galerkin's Method). Equation (27) becomes

~V~VcIL A)s (28)

Since equation (28) holds for any point in the domain, it also holds

for any group of points defining an arbitrary element 0- contained in

the whole domain. Because of this, a local approximation can be made

one element at a time, providing and i satisfy certain continuity

requirements.

12



The trial function for each element can be denoted by

(Y.,6 N%(A-5 6 (29)

Substituting into equation (28)

VOs -V V a 0 o(30)

_rL SL

where # denotes that this integral is non-zero only for those elements

that border the boundary of S). In matrix form, the element equations

can be written as

L) (e) (e)
KUj 6 . - (31)

(e) (e)
where 1< is the elemental stiffness matrix, and is the

element forcing vector.

The elemental KI and L matrices are described in Appendices A

through C. The elemental equations are transformed into a global system

of equat-ions through an assembly procedure. The global system can be

expressed as

T<LJ- Ld (32)

Treatment of Farfield Boundary

In the finite element solution for the governing differential

equation, the flowfield is discretized into a finite number of elements.

Thus the infinite domain 0 is replaced by a finite domain -0 . F. There

13



are two possible techniques to treat the farfield boundary conditions

(Ref 15).

The first method assumes that fa F is very large, and that the actual

gradient boundary conditions, 90 -> 0 , are enforced along ; . This

condition is substituted into the line integral term of the element

equations (30). Solving the differential equation with this condition

and the solid boundary condition on the airfoil (both Neumann boundary

conditions) results in a non-unique solution. To obtain a unique solution,

the value of 0 must be specified at a minimum of one node.

The second method is to impose the condition 0'$FF along the far-

field boundary 1 . The values of 6 should ensure satisfaction of the

infinity condition and be valid everywhere in the farfield. This method

has the advantage of reducing the solution domain, and has commonly been

utilized by others using finite element methods. The reduction is accom-

plished through partitioning of the global system of equations as follows

Raa 8 I _a6 Oa_-

The vector 0, is composed of the P nodal values of which are com-

puted from the expression for = The vector Ijis composed of

the remaining M=N-P unknown nodal values of , which are determined

from equation (33) by inverting matrix 1a] resulting in

k ;, Ka 1 0 6(34)

The method used in this report was the first. The uniqueness of the

flowfield was established through specification of the circulation.

14
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III Solution Methods

Three different problem solution methods, involving different

aspects of treating the branch cut were used to solve the flat-plate

lifting problem.

Superposition

The first method used was developed by de Vries and Norrie (Ref 7).

In this method, the velocity potential is defined as a superposition of

a thickness problem and a lifting problem expressed by

01 (35)

where P is the circulation, 0 is the perturbation potential, €

and 02 are the perturbation potentials of the subproblems. The two

subproblems are solved as two separate boundary value problems stated:

a)

in fl

Son surface of airfoil

(36)

do, on farfield boundary

0I (0U = o

where (95,) are the potentials of the top branch cut nodes, and

are the potentials of the bottom branch cut nodes.

15
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b)

V'r z 0in SL

d O on the farfield boundary

-d ---- on the surface

By differentiating equation (35) with respect to x, the x-component

of velocity, ( , is obtained.

l uPL + Lh. (38)

where U is the total x-component velocity, L( is the x-component

velocity of 0, field, and LZ is the x-component velocity of O& field.

The Kutta condition is applied at the trailing edge by setting the

total x-component velocity equal to zero there. The circulation can then

be determined by equating equation (38) to zero, thus

P al + U1 (.E) = (39)

therefore,

r U (40)

U I (T E)

Once r is detnrmined, its value along with the computed values

for 9! and . can be combined in equation (35) to determine the total

perturbation potential field. In this method, the ( velocity along

16
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the branch cut is constant. An advantage of this method is that the

circulation is easily determined as a result of combining and

'IAnother advantage is that the stiffness matrix f or both and tLare

symmetric and banded storage and solution methods are applicable. A

Gaussian elimination method 4as used to solve the system equations.

[ Iterative Method 1

In this method of solving the flat-plate problem, the finite

element equations were modified for the jump in 0across the branch

cut by setting

-± ~ (41)
OL Z_

and iterating the solutiUon through the value of circulation until the

L(velocity at the trailing edge becomes zero. This method treats

the flowfield as one boundary value problem, and requires solution of

the finite element equations for each iteration of P.The same solution

routine as previously noted was used. The stiffness matrix is again

symmetric and banded, thus allowing the reduced storage method. As in the

first method, the UA velocity component along the branch cut is

constant.

Iterative Solution Method 2

In this method, the flowfield is treated as one boundary value

problem with the finite element equations modified for the jump in po-

tential across the branch cut by defining

OU OL(42)

17



where the value of P is again determined through an iterative process

as in Che previous method. An additional constraint is added at the

trailing edge to make the average velocity there equal to zero,

The requirements of equations (42) and (43) make the stiffness

matrix non-symmetric, and thus the reduced storage methods used in the

previous methods cannot be used. This problem was solved again using a

Gaussian elimination method. The L4 velocity along the branch cut;

however, is no longer required by the problem to be zero.

18



IV The Flat-Plate at Angle of Attack

The finite element results are presented for a flat-platc airfoil

at a small angle of attack. The pressure coefficient distribution over

the airfoil is determined using the solutions for the potential functions.

Appendices A through C contain the computational details of how this is

done. The calculated pressure distributions are compared to the results

from classical thin-airfoil theory. The value of circulation, obtained

as a consequence of applying the Kutta condition, is also compared to

the thin-airfoil theory value.

Three types of elements were used to obtain the pressure coefficient

distribution: linear, Appendix A; mixed, Appendix C; and quadratic,

Appendix B. The effect of the farfield boundary location and refinement

of the element discretization in the flowfield domain was determined for

each element. The superposition method was used to generate the results

in this section; however, the iterative solution methods were shown to

produce the same results.

Flowfield Grid Parameters

An automatic mesh generation technique was used to produce the

nodal coordinates. The parameters of the grids were as follows:

YMAX - the y-direction width of the rectangular field, with

the airfoil approximated at y=O.

XMAX - the x-direction width of the rectangular field.

NDX - the number of divisions in the x-direction in the farfield,

NDX/2 in front of and behind the airfoil. The value of NDX

is equivalent to one element for linear and half an

element for quadratic elements.

19



NDXA - the number of x-direction divisions along the airfoil

surface. The same relationship with respect to elements

as in the NDX parameter.

NDY - the number of y-direction divisions in the flowfield.

The same relationships to elements as in the x-direction

parameters.

Linear Elements

For linear elements, the Q velocity along the airfoil surface and

element boundary interface is constant for each element, reference

Appendix A. For this reason, applying the Kutta condition at the trailing

edge requires the velocity and as a consequence the pressure coefficient

to be zero in the last element on the top and bottom of the airfoil.

This requirement can produce a significant error at the trailing edge,

if the last element is large with respect to the airfoil.

Three grid patterns were used: a uniformly spaced grid, Fig 3;

a uniform grid with a small (.005 chord) element at the trailing edge,

Fig 4; and a grid in which the size of the elements increases exponen-

tially from the leading and trailing edges, in both the x- and y-direc-

tions over the airfoil and in the field, Fig 5.

Fsarfield Boundary Location.

As previously noted, the location of the farfield boundary is

characterized by the parameters X?4AX and YMAX. The solution of the

problem could be obtained for any combination of these two parameters;

however, it is desireable to reduce the computation time and space by

selecting the smallest possible area. The method used was that used by

Marsh (Ref 15). The lower bounds on these two parameters, XIIAX and YMAX,

were determined from a series of solutions for elements of fixed size.

20
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Figure 3. Linear Eq ually Spaced Element Discretization
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XIIAX

Figure 4. Linear Oqually Spaced Element Discretization With Small
Trailing Edge Element
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H- C
XMAX

Figure 5. Linear Exponentially Spaced Element Discretization
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This fixed size, or Aspect Ratio (AR), is the ratio of ,.y of the

element. This analysis was accomplished with the equally spaced grid

with small trailing edge element. Although this small element is not

the same size as the others, it actually has a beneficial result, as

will be seen later. A base solution for relatively small values of XMAX

and YMAX, with constant AR for the elements was first established. The

size of the field was then expanded on the outer perimeter of the flow

domain. A series of solutions was thus obtained for increasing values

of XMAX and YMAX. By holding the element size constant and varying only

the number of elements, the effect of the farfield boundary location on

the pressure distribution can be determined. The base flowfield was

first expanded in the x-direction only, keeping the number of y-direction

elements constant. The results of this expansion are shown in Fig 6.

These results indicate that there is no change in the circulation for

XMAX greater than 2.5 chordlengths. The flowfield was next expanded in

the y-direction, holding XtAX= 2.5c. The results of this expansion are

shown in Fig 7. It is seen from these results that a YMAX greater than

3.Oc produces no change in the circulation. It can; therefore be con-

cluded that a farfield boundary location greater than XAX= 2i5c and

YMAX= 3.Oc has no effect on the pressure distribution on the airfoil.

Pressure Coefficient.

The effect of the three types of grids on the pressure distribution

was investigated next. The value of the circulation being proportional

to the integrated pressure distribution can be used as a measure of the

relative accuracy of the pressure distribution, in an average sense.

In Fig 8, the three grids are compared with respect to the convergence

of the circulation-to the classical thin-airfoil theory value, when

24



Flat Plate at Angle of Attack

Linear Elements w TE Correction

NDXA= 8

WDY= 10

T.A.T.= thin-airfoil theory

IN

T.A.T.

o

XMAX

(Symbol AR YMAX
A 1.00 1.25

0-50 2.5

1 ~0.25 5.0

Figure 6. Linear Elements, Constant Aspect Ratio, Expaension of Domain
in x-direction
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Flat Plate at Angle of Attack

Linear Elements w TE Correction

NUXA= 8

NDX= 12 XMAX= 2.5
T.A.T.= thin-airfoil theory

T.A.T.

'-IA

Symbol AR

A1.00
0 0.50
9l 0.25

Figure 7. Linear Elements, Constant Aspect Ratio, Expansion of Domain
in y-direction
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Flat Plate at Angle of Attack

Linear Elements

)XMAX=YYIAX 5c

NDX=NDXA7NDY

T.A.T. thin-airfoil theory

T.A.T.

NDX

Symbol Grid

A ILinear Elements - Uniformly Spaced
o JLinear Elements - with small TE element

El Linear Elements - Exponential Spa~cing

Figure 8. Convergence of Circulation For Linear Element Grids
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a uniform reduction in grid size is made. From this figure, it is seen

that the equally spaced grid is the slowest of the three to converge. An

examination of the actual pressure distribution in Fig 9 shows that the

zero pressure requirement in the last element, to impose the Kutta

condition, effectively shortens the airfoil by the width of that element.

The decrease in width of the airfoil surface elements can improve this

condition; however, since the size of this last element is inversely

proportional to the number of elements, it would take 20 elements to

extend to 95% of chord and 200 elements to cover 99.5% of chord. From

Fig 8, it is seen that introducing the small element at the trailing

edge improves the convergence of the equally spaced element grid. The

pressure distribution for this case is shown in Fig 10. In this case

99.5% of the airfoil is covered by non-zero elements, for any desired

number of surface elements. Comparing Figs 9 and 10, it can be seen that

since the grid with the trailing edge element is effectively longer, for

the same grid parameters, all values of the pressure distribution are

slightly higher in each interval. The third grid, exponentially spaced,

is shown in Fig 8 to be the best of the three. The 200 element grid,

corresponding to NDX = NDY = NDXA = 10, has a circulation value only

2.2% below that of the exact solution, while the first two grids with

these same parameters are 19.3% and 14.1% respectively below the exact.

The pressure distribution for the exponential grid case is shown in

Fig it. The major reason for the improvement in circulation is the

concentration of smaller elements near the leading and trailing edges.

The small elements at the leading edge allow for a better approximation

to the singularity, while at the trailing edge they automatically reduce

the size of the zeto pressure element. The large elements near the
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Flat Plate at Angle of Attack

Linear Element No TE Correction

XMAX=YMAX= 5c

'.0

-o-

Cii

-. 0.

N0

Distance From Midchord

Symbol Nodes Elements NDX NDXA NDYA 10o 72 6 6 6

0 165 128 8 8 8
L . 246 200 to to to

Figure 9. Pressure Distribution For Linear Equally Spaced Elements
and Uniform Reduction of Element Size
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Flat Plate at Angle of Attack

Linear Elements w TE Correction

• XMAX=Y.IAX= 5c

0 •
.00
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.A.

s--.

-. 5 0 .5
Distance From Nidchord

Symbol Nodes Elements NDX NDXA NDY

57 36 4 4 4

175 136 8 8 8

258 210 10 10 10

Figure 10. Pressure Distribution For Linear Equally Spaced Elements
With Small Trailing Edge Element and Uniform Reduction
of Element Size
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Flat Plate at Angle of Attack

:1 Linear Elements -Expconential

C I XMXYI,,A.X 5c

. 0.

(D.

-43

-. 50

Distance From Midchord

Symbol Nodes Elements NDX NDXA NDY

A 511 32 4 4 4
0 165 128 8 8 8

13 246 200 10 J_10 10

Figure 11. Pressure Distribution For Linear Exponentially Spaced Elemnts
and Uniform Reduction of Element Size
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midchord do not cause a significant error, as this portion of the exact

curve is the most linear. In all three cases the pressure distribution

step function approximately intersects the exact solution at some point

in the interval. Thus, even coarse grids are not unrealistic in approx-

imating the pressure distribution. In Figs 9-11, the effect of uniformly

reducing the element size on the pressure distribution is shown. The

fastest convergence occurs at the midchord and the slowest occurs at

the leading edge singularity. The solution trend in all cases is correct,

in that they approach the exact solution as the element size is made

smaller. Refinement of the elements through the farfield parameters,

NDX and NDY, are shown in Figs 12-14 for the three grids. This technique

produces a fast convergence from midchord to the trailing edge, and

slower convergence toward the leading edge. Refinement of the elements

through the airfoil element width parameter NDXA only is shown in Figs

15-17 for the three grids. This refinement exhibits slower convergence

at the leading edge than the previous method; however, this method shows

better convergence to the shape of the exact curve.

These refinement techniques, suggest the best method of refinemcnt

would be to first refine the farfield parameters until the leading edge

element pressure varies little with further refinement, and then refine

through the surface element parameter NDXA to obtain the best approximation

to the exact curve.

Mixed Elements

In order to eliminate the step function characteristic of the

pressure distribution for the previous linear element grids, a mixed

element was introduced along the airfoil surface, Fig 18, with the

quadratic side aligued along the airfoil boundary. Refer to Appendix C

32



Flat Plate at Angle of Attack

Linear Elements No TE Correction

C,: 
XMAX=YMAX= 5c

Pt

CQ

0 -5

Distance From Nidchord

Symbol Nodes Elements ND.X NDXA NDY

A 116 84 6 J 8 6
[0 165 128 18 8 8

E)_ 222 1.90 110o 8 10

Figure 12. 'Pressure Distribution For Linear Equally Spaced Elements
and Uniform Reduction of Farfield Parameters Only
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Flat Plate at Angle of Attack

Linear Elements w TE Correction

* XNAX=YYAX= 5c

0

-. 50
Distance From Bidchord

Symbol Nodes Elements NDX NDXA NDY

A 81 52 4 8 4
0 175 136 8 8 8

234 190 10 8 10

Figure 13. Pressure Distribution For Linear Equally Spaced Elements
With Small Trailing Edge Element and Uniform Reduction of
Farfield Parameters Only
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Flat Plate at Angle of Attack

: ILinear Elements - Exponential

XMAX=YMAX= 5c

A

C i

-.5 0.5

Distance From Midchord

Symbol Nodes Elements NDX NDXA NDY
ik 75 48 4 8 4

165 128 8 8 8

222 180 _o 8 t0

Figure 14. Pressure Distribution For Linear Exponentially Spaced Elements
and Uniform Reduction of Farfield Parameters Only
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Flat Plate at Angle of Attack

Linear Elements No TE Correction
• I XMAX=YMAX- 5c

',,0

U'

C, "0- "

0-0

N ,

-. 5 .5
Distance From Midchord

Symbol Nodes Elementsj NDX NDXA NDY
15 12 8 6 8

0 165 12a 8 8 8

Figure 15. Pressure Distribution For Linear Equally Spaced Elements
and Uniform Reduction of Airfoil Element Width Parameter
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Flat Plate at Angle of Attack

Linear Elements w TE Correction

* XNIAX=YMAX *5c

-- 0

04

Distance From Midchord

ISmbNodes [Elements NDX NDXA NDY
'A 135 104 84 8
0 175 136 88 8
El 1 1951 152 8 10 8

Figure 16. Pressure Distribution For Linear Equally Spaced Elements
With Smbll Trailing Edge Element and Uniform Reduction
of Airfoil Element Width Parameter
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Flat Plate at Angle of Attack

Linear Elements - Exponential

* IAX=YIAX 5c

oP4.
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1 1.. _ ..

-.5 0 .5

Distance From Midchord

5ymbol Nodes tElements NDX NDXA NDY

A 12.5 96 8 4 8
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Figure 17. Pressure Distribution For Linear Exponentially Spaced Elements
and Uniform Reduction of Airfoil Width Parameter
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Figure 18. Mixed Element Discretization

39



for formulation of equations with this element. With this modification

the velocity and as a consequence the pressure along the airfoil surface

is a linear function in each element, rather than a constant. This

allows the application of the Kutta condition at the last node on the

airfoil rather than the entire last element as done previously. Thus the

mixed element prevents the shortened airfoil effect that occurs when

linear elements are used.

Farfield Boundary Location.

The procedures used for determining the farfield boundary location

in the linear element section were also used for the mixed elements. The

results of expanding the field in the x-direction are shown in Fig 19,

while the subsequent expansion in the y-direction is shown in Fig 20. It

can; therefore, be concluded that a farfield boundary location greater

than XMAX= 2.5c and YMAX= 3.5c has no effect on the pressure distribution

on the airfoil.

Pressure Coefficient.

The effect of element size on the pressure coefficient distribution

and circulation were accomplished like that for linear elements. The

comparison of the convergence to the thin-airfoil theory value of circu-

lation with those of the two equally spaced grids in the previous section

are shown in Fig 21.* From this figure it is seen that the mixed elements

on the airfoil effectively produce the same circulation as the grid with

the small trailing edge correction element.* Thus the mixed elements

automatically correct for the trailing edge error that was seen to be

a problem for the equally spaced grid in the previous section. The

pressure distribution for the uniform reduction in element size is

shown in Fig 22. When this distribution is compared with that for the
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Flat Plate at Angle of Attack

Mixed Elements

NDXA= 8

NflY 10
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Figure 19. Mixed Elements, Constant Aspect Ratio, Expansion of Doma.in
in x-direction
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Flat Plate at Angle of Attack

Mixed Elements
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Flat Plate at Angle of Attack

XMAX=YMAX= 5c

NDX=NDXA=NDY

Ok=

T.A.T.

0

V
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%0

0 l
* 6 8 10

NDX

Symbol Grid

& Linear Elements - Uniformly Spaced

0 Linear Elements - with small TE element
9I Mixed Elements

Figure 21. Convergence of Circulation of Mixed Elements Compared to
Linear Equally Spaced Grids
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Flat Plate at Angle of Attack

Mixed Elements

XMAX=YYA.X= 5c

4

-,5 0 .5
Distance From Midchord.

Symbol Nodes Elements NDX NDXA NT'Y

59 32 4 14 4
0 181 128 8 8 8

9 266 200 10 110 10

Figure 22. Pressure Distribution For Mixed Elements and Uniform Reduction
of Element Size
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linear elements with small trailing edge element in Fig 10, the reason

for virtually the same circulation with similar parameters becomes

apparent. The value of the pressure coefficient in each comparable

element at the midpoint of the element is virtually the same in each

case. The advantage to the mixed elements; however, is the improved

approximation compa~red to the exact curve that is obtained with the

linear distribution within the element. Another characteristic of the

mixed element is the jump in pressure at the interface of each element.

This jump is very small except at and near the leading edge. The cause

of this jump, is due to the large change in the slope of the exact

solution near the leading edge. In attempting to approximate this change,

the elemental slopes are also changing by large amounts in this region.

This causes the potentials at the common nodes to vary. The conclusions

of the previous section concerning the convergence of the pressure

distribution to the exact value from thin-airfoil -theory apply in this

case, with the mixed elements producing a better approximation to the

exact distribution.

,uadratic Elements

The third type of element used was a quadratic, Lagrange, element

which was used throughout the flowfield, Fig 23. The elemental equation

formulation is demonstrated in Appendix B. As in the mixed elements on

the airfoil, the quadratic elements allow the Kutta condition to be

applied at the last node on the airfoil. The 14 velocity and pressure

are also linear along the airfoil boundary.

Farfield Boundary Location.

The same procedures used for determining the farfield boundary

location for the linear elements were also used for the quadratic
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elements. The results of expanding the field in the x-direction are

shown in Fig 24, while the results for the subsequent expansion in the

y-direction is shown in Fig 25. In this case a farfield boundary location

greater than XMAX= 3.5c and YMAX= 3.5c has no effect on the pressure

distribution on the airfoil.

Pressure Coefficient.

The effect of element size on the pressure distribution is accom-

plished as was done for the linear elements. The result for uniform

reduction of the element size parameters is shown in Fig 26. This figure

shows that element refinement produces very fast convergence from the

quarter chord to the trailing edge. Near the leading edge convergence

is much slower, as the slope of the approximation is changing very fast

in this region. In general it can be said that even a coarse mesh pro-

duces a reasonable approximation to the exact thin-airfoil theory value.

As elements are refined it is evident that the error in the pressure

becomes smaller. This fact is also reflected in the improvement of

circulation. The trend of the solution is seen to approach the exact as

element size is reduced, which is the desireable trend.

The--results for reduction of the farfield size parameters only are

shown in Fig 27. In this coarse grid, only four elements on the airfoil,

there is little change in the pressure distribution from the quarter-

chord to the trailing edge. Keeping the airfoil elements constant and

reducing the farfield elements produces a significant jump at the inter-

face of the first two elements. This jump increases with decreasing size

of the farfield elements. This can be attributed again to the slope in

the first two elements, as occurred in the mixed elements.

The results for the reduction of the element width over the airfoil
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Flat Plate at Angle of Attack

Quadratic Elements
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Figure 24. Quadratic Elements, Constant Aspect Ratio, Expans ion of
Domain in x-direction
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Flat Plate at Angle of Attack
Quadratic Elements

NDX= 20 XMAX 3.5
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T.A.T.
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Figure 25. Quadratic Elements, Constant Aspect Ratio, Expansion of
Domain in y-direction
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Flat Plate at Angle of Attack

Quadratic Elements

~X.XMAX=YMAX= 5c

.5

165 02 8

1343 72 12 12 12
E) I 585 128 16 16 16

Figure 26. Pressure Distribution For quadatic Elements and Uniform
Reduction of Element Size
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Flat Plate at Angle of Attack

Quadratic Elements

XKAX=DIAX= 5c

%0.
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Figure 27. Pressure Distribution For Quadratic Elements and Uniform
Reduction of Farfield Parameters Only
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only is shown in Fig 28. The results show that refinement in this

manner does not significantly improve the leading edge approximation,

but does on the average improve the approximation at each point to the

exact.

From these observations, the same conclusions concerning discretiza-

tion that were made for linear elements apply to the quadratic elements.

A comparison of the pressure distributions obtained with linear elements,

mixed elements, and quadratic elements with the element size parameters

the same is shown in Fig 29. It is evident from this figure that the

improvement in circulation is due to a closer approximation at the

leading edge for the quadratic element. It is also seen that when using

the midpoint of the linear elements for comparison, there is little

difference in the three elements from the quarterchord to the trailing

edge.
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Flat Plate at Angle of Attack

Qua.dratic Elements
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Figure 28. Pressure Distribution For Quadratic Elements And Reduction
of Airfoil Element Width Parameter Only
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Flat Plate at Angle of Attack
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Figure 29. Pressure Distribution Comparison of Linear, Mixed, and
Quadratic Elements
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V Conclusions and Recommendations

The Galerkin Finite Element Method was shown to be an effective

means of approximating the solution to the steady, two-dimensional,

incompressible, potential flow over a thin lifting airfoil. Three types

of elements were used over the airfoil to investigate the farfield

boundary location and the pressure distribution over the airfoil.

The Superposition Method of solution was seen to be the best of

the three solution methods used from the standpoint of computer storage

and computation time. It was found through comparison of the results of

this method with those of Iterative Method 2, that the constraint of the

x-velocity being zero along the branch cut has negligible influence on

the pressure distribution and circulation.

The infinite domain of the problem was approximated by a finite

domain. It was desireable to make this domain as small as possible

without affecting the results. This was accomplished by expansion of a

base solution of constant aspect ratio elements in first the x-direction

and then the y-direction. The result of this procedure showed that the

infinite domain could be approximated by a relatively small finite

domain. The domain of the linear elements could be approximated by

XMAX=2.5c and YMAX=3.0c. The domain of the mixed elements could be

approximated by X4AX=2.5c and YMAX=3.0c, while the quadratic element

domain was XMAX=3.5c and YMAX=3.5c. Although the quadratic element

domain is slightly larger, the number of elements used is much smaller,

14 in both the x- and y-directions versus 20 and 24 in the x- and y-

directions respectively for the linear elements.

The use of linear elements throughout the flowfield and on the

55



surface of the airfoil was investigated for three grid patterns. It was

seen that using a uniform grid over the domain was not an efficient

method, due to the singularity at the leading edge and the application

of the Kutta condition at the trailing edge, which effectively made

the airfoil smaller. A correction to this grid was made by adding a

small element at the trailing edge. This modification made a significant

improvement in the convergence of the pressure distribution to the exact,

by eliminating the loss of pressure at the trailing edge with coarse

grids. A third grid that varied the size of elements, concentrating

small elements at the leading and trailing edges, produced the fastest

convergence to the exact circulation value. This was due to the improve-

ment in the approximation at the leading edge singularity.

The use of mixed (transition) elements on the airfoil surface with

linear elements everywhere else was next investigated. This element was

an improvement over the linear element in approximating the pressure

distribution. This was due to the linear variation in the mixed element

as opposed to the step function distribution of the linear element.

This element also eliminated the problem of applying the Kutta condition

as was experienced at the trailing edge with the linear elements.

Although this element produces an improved pressure distribution over

the linear elements, the circulation is effectively the same.

The use of quadratic, Lagrange, elements over the airfoil surface

and in the farfield improved the convergence of the circulation to the

exact, when comared to uniformly spaced linear and mixed elements, with

an equivalent number of nodes. Some care must be exercized when using a

coarse grid over the airfoil due to the jump in pressure at the element

boundaries, near the leading edge. A major disadvantage of this element
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is the large number of degrees-of-freedom associated with it.

From the above considerations, it can be concluded that a variable

geometry grid with small elements concentrated at the leading and

trailing edges provides the best results for the approximation of the

circulation. This is further evidenced by comparing the quadratic

element results with the linear elements at an equal number of degrees-

of-freedom. For 165 nodes the circulation value for the quadratic

elements is 12.4% below the thin-airfoil theory value, while the linear

exponentially spaced grid is only 4.2% below thin-airfoil theory.

The pressure distribution is best approximated by a quadratic

interpolation, the mixed or quadratic elements, on the airfoil surface.

The combination of the mixed elements on the airfoil surface and linear

elements in the farfield provides a reasonable approximation to the

exact thin-airfoil theory, without the disadvantage of the extra

degrees-of-freedom required by the quadratic elements.

Recommendations For Future Work

This investigation should serve as a basis for further work in the

application of the Finite Element Method to the thin-airfoil problem.

Extension of the method to the cambered and thickness portions of the

airfoil problem are necessary. An analysis of this problem for the

convergence of the circulation and pressure distribution as was accom-

plished for the flat-plate at angle of attack should be done. The treat-

ment of the branch cut when the method is applied to the thickness

problem needs to be addressed. In this case the circulation is zero and

the x-direction velocity in the branch cut cannot be zero.

The treatment of the farfield boundary requires further investigt "-

tion. In this report no potential values were defined on the farfield
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boundary. A method for defining the potentials on the farfield boundary

woul.d reduce the system of equations to be solved through partitioning.

Further investigation of grid refinement needs to be made. The

concentration of small elements at the leading and trailing edges should

be extended to include the mixed and quadratic elements. The effect of

placing a mid-side node, from either the mixed or quadratic element, at

the leading and trailing edges should be reviewed.

Other types of elements, such as Hermitian, to guarantee continuity

of the pressure at element boundaries, infinite elements, that do not

require the finite boundary, or special elements to improve the approxi-

mnation at the leading edge singularity could also be applied to this

problem.

The orientation of the branch cut in this report was restricted to

extension horizontally from the trailing edge to the farfield boundary

along y--O. The effect of changing this orientation, such as approximating

it with a function whose slope at the trailing edge were equal to the

angle of attack and that became horizontal at some distance behind the

trailing edge, should be compa~red with the results obtained here.
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Appendix A

Finite Element Equations For Flow Over

an Airfoil For a Bilinear, Rectangular

Element

Interpolation Functions

The interpolation functions for the bilinear rectangular element

shown in Fig 30 are given by

(A-1)

04 ( 5-;r,)/ -'= (A-4)s../

Coordinates ( 7) are the local nodal coordinates.

Elemental Equations

The Finite element equations obtained from the governing differential

equation and written in elemental form are expressed by equation (31) as

ALJ j (A-5)

where

AL-j ' O )d Cj (A-6)

d- cl L c(A-7)

Global coordinates are transformed to the local coordinates
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Figure 30. Bilinear Rectangular Element
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(1,7/) by the transformation equations:

.7 10 (A-8)

dx : d d y -_ 6 d{'

From these expressions, the elemental equations can be written in the

form

Q -CU Ti- d (A-9)

+' (.I*.)

The matrix A(,j is dependent only on the size of the element and

not directly on any particular airfoil contour. Substituting the inter-

polation functions, A-i through A-4, into A-5 results in

I I I -A+5 IA+- i(A+6 )ll I

zI t

A+ 6
I " A (A-Qi)

I-I A45+
(SYM - _

iA-+ 13

where A: n and
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The vector is directly dependent on the airfoil surface

contour. This quantity is evaluated only for elements that share a

common boundary with the surface. For all other elements, this vector

is zero.

Velocity Distribution

The velocity in element P is calculated from the assumed solution

for the potential given by eq 24

e
V (x(24)

From the definition of the potential function

;tx Q L6(A-12)

and through transformation to local coordinates K

(U---:F. -Z
I ' I(A-13)

The x-direction velocity on the top surface, f.-J , U becomes

(A-15)

Likewise on the lower surface, 7z:+ becomes

LL of ¢- OZ
'L (A-16)
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Pressure Distribution

For steady, small-disturbance theory the coefficient of pressure is

given by (Ref 13)

CF - 2 t (A-1)

From thin-airfoil theory, the pressure coefficient is evaluated

along L6.r " . Thus for element a which borders the airfoil surface,

the elemental pressure coefficient becomes

4

For an upper surface element, = - I , C .becomes

CU CU(04-03 (A-19)

For a lower surface element, _:+1 , Cp becomes

-P (A-20)

Within the element e , the pressure is a constant value, which

results in "jumps" in pressure between elements along the airfoil

surface. The pressure distribution along -_Ot is; therefore, a step

function for the bilinear rectangular element.

Boundary Influence

Those elements along the airfoil surface wili produce non-zero

forcing terms .. The forcing term is determined by evaluating eq A-7
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for each element

. . d :o(A-21)

For a flat plate at angle of attack D a Converting the

integral to the local coordinate system gives

. -_ -O (tk i  (A-22)

For elements along the lower surface the forcing terms are determined

from 4 |

I .|(A-23)

For elements along the upper surface the forcing terms are determined

from

C4 (A-24)
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Appendix B

Finite Element Equations For Floli Over an

Airfoil For a Biquadrati', Lagrange,

Rectangular Element

Interpolation Functions

The interpolation functions for the biquadratic, Lagrange,

rectangular element shown in Fig 31 are given by (Ref 3)

I -

(B-2)
- ~3 (B-3)

~ _ (B-5)
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Figure 31. Biquadratic, Lagrange, Element
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Elemental Equations

The elemental equations are the same as those derived for the

bilinear rectangular element, eq A-5 through A-7,

I(. 
(A-5)

4-t c (A-7)- ' f_+,

The first matrix A" is only dependent on the size of the element

and not directly on any particular airfoil contour. Substituting the

interpolation functions, B-I through B-9, into A-5 results in the matrix

shown in Fig 32.

The vector is directly dependent on the airfoil surface

contouir. This quantity is evaluated only for elements that share a

common bouneary with the surface. For all other elements this quantity

is zero.

Velocity Distribution

The velocities in element C- are calculated as in Appendix A,

with

(A-)

O" '-13)
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The x-direction velocity on the top airfoil surface, ff--, becomes

Likewise on the lower surface, r+| , £( becomes

UL , L( L (03 14 07~l) (B-12)

Pressure Distribution

For steady small disturbance theory the coefficient of pressure

is given by (Ref 13)

C -(B-13)

From thin-airfoil theory, the pressure coefficient is evaluated

along -C . Thus for element e which borders the airfoil surface

the elemental pressure coefficient becomes

For an upper surface element, ---- | , C 9 becomes

C +0 (B-15)

For a lower surface element, 1=+I , Ce becomes

Within the element P. the pressure varies linearly, Since this
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element is a C element, there is a jump in pressure from element to

element.

Boundary Influence

Elements along the airfoil surface will produce non-zero forcing

terms . The forcing terms are determined as in Appendix A, and

expressed in A-7 as

S- koil CIX (B-17)

For a flat plate at angle of attack o( , . Converting the

integral to the local system gives

-~ (B-18)

~SL

For elements along the lower surface the forcing terms are determined

from
+1

L ~ ud (B-19)
-I

For elements along the upper surface the forcing terms are determined

from

4-I
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Appendix C

Finite Element Equations For Flow Over an

Airfoil For a Mixed

Rectangular Element

Interpolation Functions

The interpolation functions for the mixed rectangular element

shown in Fig 33 are given by

05 + SY + 9- 1 )( (C-3)4 (C-4)

Coordinates (gf,) are the local nodal coordinates.

Elemental Equations

The elemental equations are the same as those derived for the

bilinear rectangular element, eq A-5 through A-7

AC "- (A-5)

41 41

A(J (A-6)

Sr cxj(A-7)
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The matrix Azj is only dependent on the size of the element and

not directly to any particular airfoil contour. Substituting the

interpolation functions, C-i through C-5, into A-5 results in

7O/AR I 1O/AR '-IS/ARI' IS/AR 1 -80/A"

41 AR 1 -3AR_ 1 1-I,5AR '46A
I 0/AR 1 S/AP I, /AR I -FO/AIZ

.IZAR ' 1I6ArI I 46AR
I 130/AR 1-3o/AR IA 10 1 _ I-oAQ +4RSA -3 A R  (c-6)

I I 30/AR I -30AR
_ _I +3oA.1

SI I 16I0/
+I I 4 49 AR

where AR

The vector is directly dependent on the airfoil surface

contour. This quantity is evaluated only for elements that share a

common boundary with the surface. For all other elements, this vector

is zero.

Velocity Distribution

The velocity in the x-direction on the airfoil is calculated as in

Appendix B for the quadratic element. For the upper surface, q becomes
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Pressure Coefficient

The pressure coefficient on the airfoil is calculated as in

Appendix B for the quadratic element.* For the upper surface,

becomes

Boundar Influence

Those elements el along the airfoil surface will produce non-zero

forcing terms '. Since the quadratic side of the element is positioned

along the airfoil surface, the boundary influence is the same as that

derived in Appendix B for the quadratic element.
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